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Abstract--The two-fluid equations describing the motions of isothermal beds are discussed from a 
continuum mechanics viewpoint. The questions of the invariant form of the relative phase acceleration, the 
proper description of the "viscosity" of fluidized systems, and the nature of the individual phase pressures 
are discussed. The linear instability wave problem is formulated and solved and the theory is shown to be 
capable of describing wave propagation properties measured in an earlier experimental study. The data are 
then used to deduce values of material constants which are both internally consistent and of reasonable 
magnitude. 

t. INTRODUCTION 
In Part I, (EI-Kaissy & Homsy 1976), hereafter referred to as I, we published the results of a 
study of the growth and propagation of instability waves in a fluidized bed. That study had as 
objectives the gathering of data of sufficiently high quality for comparison with theory, and the 
exploration of the connection, if any, between waves and bubble origin. The latter objective 
was resolved in I in the affirmative. It is the comparison with theory which is the subject of the 
present paper. 

There is only one previous study, Anderson & Jackson (1968, 1969), which had similar 
objectives. However, the experimental data reported by them were in part obtained visually, 
and all data analysis was done by hand, whereas in I we employed a minicomputer system 
capable of performing the averaging necessary to ensure statistical significance. A detailed 
comparison of their data with ours shows them to be not statistically significant. Improper 
averaging leads to a growth in amplitude with height which is linear, but illusory (EI-Kaissy 
1975). This is evident from the "adjustment" applied to the wave amplitudes in order to obtain 
the expected exponential growth in distance. They also include, in the theory, a horizontal 
structure for disturbances which is unsupported by experimental observation. Thus, any direct 
comparison of their work with ours is difficult. As will develop below, comparison of theory 
and experiment for the wave problem is by no means straightforward. Briefly, this results from 
the fact that in order to obtain good data on the organized wave motions before they become 
chaotic, it is necessary to use liquid fluidized beds. This in turn necessitates the inclusion, in the 
theory, of important physical effects (specifically, virtual mass terms and a "collisional 
pressure" term), which are believed to be relatively unimportant in particles fluidized by gas. 

In order to develop a continuum description, some preliminary steps are necessary. In 
Section 2, we present a partial discussion of the so-called two fluid equations and the continuum 
hypothesis which underlies them. We highlight the axiomatic continuum mechanical develop- 
ment that can be used to close these equations. We thus arrive at a relatively simple set of 
equations which have been developed by others using different methods. Sections 3 and 4 
contain the details of the solution of the linear instability problem and comparison with 
experiment. 

2. CONTINUUM HYPOTHESIS AND THE TWO FLUID EQUATIONS 

In virtually all of the theoretical work in fluidization, there emerges the idea, sometimes 
not explicitly stated, that the motions of a fluid-solid system, when viewed on a continuum 

scale, are often organized and in some cases may be considered deterministic. The continuum 
scale is clearly one which is sufficiently large to contain many elements of both continuous and 
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dispersed phases, but remains small in comparison with the length scale of the confining 
apparatus or the length scale of the phenomena. The determinism is exemplified by the bubble 
problem, in which many researchers have sought to elucidate the unique relationship between 
bubble size and bubble velocity. Given this hypothesis, one then seeks to describe these 
continuum properties by a suitable set of partial differential equations. Systematic derivation of 
these equations has been attempted in the past by the technique of volume-averaging of the 
point equations. For detailed accounts see Anderson & Jackson (1967), Drew & Segel (1971) 
and Ishii (1975). This approach is instructive because of its appealing physical significance; 
certain terms in the averaged equations have unambiguous origin and physical interpretation. In 
complicated dispersed two phase flows where the individual phase velocities are not equal, nor the 
concentration of one of the phases small, volume averaging looses much of its appeal. As in the 
averaging of any set of non-linear field equations, the averaging process produces Reynolds 
stress-like terms which ultimately must be modeled by some closure technique. It is only for 
moderately dilute systems, systems with no slip velocity, or systems in which the underlying 
point equations are essentially linear, that any hope for a satisfying fundamental treatment is 
justified (see Batchelor 1974). 

The alternative approach is to proceed axiomatically, using the techniques of continuum 
mechanics. This tack cannot succeed where the previous one failed; however, we have found the 
large and well-studied literature on mixture theory to be beneficial in dealing with the two-fluid 
equations. Although mixture theory was originally developed to study and generalize certain 
results in diffusion theory for separate chemical species within the same phase, it is equally 
applicable to dispersed two-phase systems, given certain hypotheses. For those interested in 
lucid accounts of mixture theory, see especially Miiller (1968), Green & Naghdi (1969) and 
Bowen (1971). We only give an abbreviated discussion here. 

In what follows, the summation convention of repeated subscripts is in effect; the 
superscript refers to the phase, a = 1,2, for fluid and solids respectively. Where it is helpful, we 
make this more explicit by use of the superscripts f and s. When used as subscripts, the letters 
s and [ refer to properties of the separate phase, not to continuum properties. 

We ascribe the following properties to the mixture. 
(1) Each phase has associated with it an average velocity, vi". 
(2) Each phase has associated with it a continuum density p". For isothermal fluidization, the 

continuum densities are simply related to the individual phase densities and the voidage, e; 

pl=ON; p: = p~(1-e). [2.1] 

(3) We identify material volumes, moving with either of the individual phase velocities, over 
which fundamental balances of mass, linear momentum and angular momentum may be written. 
Assumption of certain well-known smoothness propetries then allows the development of the 
differential form for each of these balances. 

We do not belabor this development, but give the results. For non-reactive particles in 
which no phase charge occurs, the mass balances in the mixture read 

Op a + O(p" Vk") = 0. [2.21 
Ot ~Xk 

The balance of linear momentum reads: 

pa [ OIJi a o~ia ] - ~ -" + p"b," [2.3] 
I_-Ti- + v f  Oxi J - Oxj + ~i 

where T~ is the partial stress tensor giving the surface force acting on the ath constituent due 
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to the action of all constituents,/; is the interaction force between the ath constituent and all 
other constituents, bF is the externally applied body force per unit mass. 

We do not expect a resultant force to be present in the mixture; we thus require 

//' = 0. [2.4] 
a 

Equation [2.4] is merely a statement of Newton's third law. 
Consideration of the balance of angular momentum is customary at this point of develop- 

ment, but we will not give the details here. They are contained in EI-Kaissy (1975). Suffice to 
say that it is possible to prove that if no body couples act on the phases, individually or on both 
phases together, then the partial stresses are symmetric. Thus we have 

T~ = Ti~ (a = 1,2) (2.5] 

as a statement of balance of angular momentum. Equations [2.2], [2.3] and [2.5] are the final 
balance equations for the mixture. 

We will consider only two phases (a = 1,2) and that the only body force acting on the 
system is gravitational. We also simplify the notation somewhat. Whenever it is convenient, we 
drop the superscripts on velocities, and use vi for the solids velocity and ui for the fluid 
velocity. 

The body force terms may be written directly: 

Plbil = - Pl ¢g 8/3 [2.6a] 

p2b~ = - ps(1 - ~)g ~i3" [2.6b] 

It now remains to write constitutive equations for /a, T~ (a = 1,2). Modern nonlinear 
continuum mechanics provide elegant and systematic means for arriving at constitutive rela- 
tions which are formally correct. The problem with such an approach, however, is that the 
generality of the results obtained restricts their use owing to the large number of 
phenomenological coefficients which arise. In what follows we temper the formal generality of 
the theory with physically-based arguments. In particular, we require the constitutive equations 
to satisfy the principle of material frame indifference, but we do not apply the so-called 
"principle" of equipresence. For a criticism of the principle of equipresence (see Rivlin 1970, 
1972). Furthermore, we allow a dependence of the interaction force on interphase pressure, 
relative velocity, and relative acceleration. For the stresses, we allow for purely fluid-like 
behavior, with partial stresses related only to rates of deformation. 

It is a result from the literature on mixture theory that the following quantities are frame 
indifferent: 

vl  2 = u i -  vi [2.7a] 

1/Ovi OvA 
d]j = -  __+=.=z 

2 1 0 x  i Ox,) [2.7b] 

d2 1/au, + o__~u. ] 
0 = ~ [~xj. ax,/ [2.7c1 

• 12 _ / d U i  " , dUi~  / d l ) i  - , d l ) i~ 
v i - ~ + (u i - vi)-~j ] - ~--~ + (v, - ui)~-~] [2.7e] 
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v~ 2 is the relative velocity, d~ is the rate of deformation tensor of the ath phase, fli~j z is the 
relative spin tensor, and ~5 ~2 is the relative acceleration vector. The properly invariant form of 
the relative phase acceleration was given implicitely by Adkins (1%3) and explicitely by Drew 
& Segel (1971).t 

As a first step in modeling multiphase systems, we propose a class of materials in which the 
functions Ii a and T~ are linear in the constitutive variables. Of course it is well known that 
fluid-particle systems can exhibit non-linear materials behavior (see Krieger 1972 and Jeffery & 
Acrivos 1976 for recent reviews). These effects seem to be second order for nearly isotropic 
particles, but can become quite important for fluid-fluid dispersions and particles of irregular or 
specific non-isotropic configurations. In any event, it is clear that all fluid-particle dispersions 
will behave linearly for suitably small rates of strain and relative phase velocities. Thus we 
write linear constitutive relations, using the fact that T~ is symmetric, 

a(1- E) vl2_ .~2 
I~ t = - Pt  Ox~ a3 a4 vi  

/i2 __ --  //1 

T~j=-ptE6~+ ~, ~"dV..6~j+2rl '' d } -  6ij 
3,=1 

Ti~ = - p s ( l  - E)6ij + ~, d[k ~=, (fl~2dV..6ii + 2nV2(d~-~--6i,)). 

(2.8a) 

(2.8b] 

[2.8c] 

[2,8d] 

Drag and virtual mass effects are reflected in the coefficients or3, O14 respectively. The 
appropriate form for the interphase pressure that we have adopted here has been used earlier 
by Drew & Segel (1971) and Ishii (1975). The individual phases are given only fluid-like 
behavior, with d~ and an isotropic term being the only variables on which the partial stresses 
depend. Since the isotropic term gives the pressure measured over an element of volume of the 
mixture and not of the single phase, we chose the above form of the isotropic pressure. 

Now the remaining material functions,/3 ~a, ~va in general depend upon any scalar invariant 
of any objective quantity, e.g. [Iv~2[I 2=" 12. n a vi u~ , dgjdij, etc. This dependence will necessarily lead 
to non-linear material response. Since the application under discussion is a linear instability 
problem (see Section 3), it suffices to treat them as functions of the scalar variables, i.e. ps, Pr, e. 
The fact that the functions depend solely upon the lowest order statistic of the dispersion, 
namely, the voidage or the volume concentration of particles, apparently limits the linear model 
to statistically random dispersions. (For a discussion of this point, see Batchelor 1974 and 
Hashin 1964). 

Insertion of these constitutive equations into the balance laws leads, after some manipula- 
tion, to the following two momentum equations. 

Solid 
ps(1 _ E) [_~ti + ~gVi-] . [-0tti aUi] ,~-~jj -- p,(1 - ,) [-bT + u , ~ j  

_ 0 ( 1  - e ) ( p ,  - P I )  6ii + - ~ ( u i  - vi) 
,gx~ 

+ a,({au, ~u,~ 
Y ,  \-~" + (u _ v,5~x,.)_ ( ~  + (v,_ u,~o~j)jovi\\ 

- (p, - PS)(1 - ~)g 6i3 

tAIthough their derivation is in error, their final result is correct. 
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c~ 2 
+-- X (fl~'2d~nn~ii. "r2" r. dlg,~ Ox, ~,=l +2*/ (d,,---~--oii)) 

. . : . .  + :o..,. 

309 

[2.9a] 

Fluid 

/aui aui\ ~--~ 8.. - a3(u/- v~) 
: -  ax ,  " 

a 2 2 

+ -  x x : ( , . . - i f , . ; ) )- , . . , . .  0x~(~=l fl ' ldLSii + 2 ~=l [2.9b] 

We wish to point out that the basic set of equations is not closed, even if all the material 
constants are specified, provided one treats the pressures Ps, Pf as dependent variables. Indeed 
there are 9 unknowns (u, vi, ~, Pf, P,) but only 8 equations. This has been noted before 
(Anderson & Jackson 1968, Murray 1965). For isothermal fluidization, it is appealing to look for 
analogies in single phase fluid mechanics, in which the pressure may be either taken, in the 
compressible case, as a function of density; or treated, in the incompressible case, as a function 
allowing the solenoidal constraint to be satisfied. The analogy must not be taken literally 
however, since specification of both p/and p~ leads to an overdetermined system. It is common 
in the literature on two phase (gas-liquid) systems to assume 12/= P, (perhaps with a jump to 
account for surface tension in bubbly flows). This assumption is also common in the literature 
on gas fluidized systems. Although it is valid at the minimum fluidization condition, it breaks 
down as the collisional momentum transport on the microscale becomes appreciable with. 
increase of fluid phase velocity beyond the minimum fluidization velocity. Effects of collisions 
can be represented by the term p ~ - P  I, the "collisional pressure", as discussed by Drew & 
Segel (1971) and are expected to be a strongly decreasing function of voidage. So in order to 
close the basic set of equations, we assume p, -Ps  the "collision pressure" to be a function of 
continuum density, i.e. p , - p f  = f(~). 

It has been noted by many authors that the field equations have a particularly simple 
solution, referred to as homogeneous fluidization. This state is obtained by seeking solutions of 
the form 

= ~o (a constant) 

/4i = Uo 8i3 

vi = (0,0,0) r. 

[2.10] 

The continuity equations are trivially satisfied, and the momentum equations reduce to 

- • x •  = - ~ Uo 8i3 - prg 8i3 

(1 - ~o) a(p, - R) = ~ Uo 8/3 - (1 - ~o)(p, - Pf)g 8/3 OXi ~0 [2.11] 

Consider the condition of minimum fluidization. This condition is defined as that velocity for 
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which the drag on the particle phase just balances the net weight of the particles. With this 
definition, 

P~ = Pt, a3u,.f = (I - ~,.f)(P~ - or)g, 

or solving for umf, 

(1  - ~ , . ~ ) ( p s  - p t ) g  [2.12] 
Umf = a3(~mf ) 

Provided the voidage at incipient conditions may be estimated, [2.12] then provides the basis of 
correlations for u,,f for small particles (Davidson & Harrison 1%3, pp. 13-14). 

For ui > Umf~i3, fluidization occurs. It is clear from the preceeding discussion that there 
exists a stationary solution to the equations with ~ --- emf, Pf being determined from Archimedian 
hydrostatics, E being determined from [2.12], and v~ =0. This solution has in the past been 
denoted "homogeneous" fluidization. While it constitutes a solution to the problem, it is well 
known that it is unstable with respect to other, more complicated motions. We can develop this 
solution a bit further. It is a result of experiments that dpt/dx3 remains constant above Um~. Thus 
e0 > 6,f, i.e. the bed expands. In order to find a solution consistent with these observations, we 
must have 

dPr = - (1 - eo)Osg - ¢opfg [2.13a] 
dx3 

a3(e°) Uo = (1 - eo)(Ps - Pt)g.  [2.13b] 
Eo 

It is well-known that (O~3/~) is a monotonically decreasing function of ~, so a solution of [2.13b] 
for uo - u,,f consistent with the observed experimental behavior that dptldx3 ~ const., Eo > ~,,t is 
possible. 

3. THE LINEAR INSTABILITY PROBLEM 

As we have stated, the primary purpose of this paper is to explore the ability of the 
continuum equations, with the closure [2.8] to quant i ta t ive ly  describe the features of the 
experiments reported in I. The primary quantities measured therein were the frequency,/ ,  
velocity of propagation, V, and growth constant, or, of linearly unstable modes of motion which 
occur for u = Uo > um¢. We first develop the equations in dimensionless form, make some 
simplifications, and then discuss the linear instability predictions. It proves convenient to make 
the equations dimensionless using dp and Uo as length and velocity scales respectively. To avoid 
confusion, all velocities (including the scaling velocity uo) are intersticial velocities appropriate 
to the theoretical development of section 2. Thus, denoting dimensionless quantities by primes, 

u~ , vi , tuo _ P a  
' ' = ~  v i = - - ,  t = p "  [3.1] xi  = xi/dp, ui uo' uo -~p' - psuo 2" 

The equations, in their dimensionless form, then become (dropping the primes), 

Cont inu i ty  

Fluid: 

Solid: 

Oe+ 0 t 
- ~  - ~ ,  (~u , )  = 0 

0 0 
(1 - ~) + ax--~ [(1 - ~ )vd  = O. [3.2] 
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Momentum 

0 2 ^ 
,, - [Ovi  Ovil= R/Re~--( E [J~:d~'Sij Solid: H - ~) [-~- + vi~x-~xj] [axi\~:, 

+ 2~/,2 (d.~__~ 8i ~)) (1-~) O ,  0Xj ( ~ 1  t-,/~'ldYnn ~''0 

, d~k 

.fOu~ Ou~] O[(l - 0 ~ ,  -Pl)I 
ox, 

+ v i~ ) - I :~ t  +(v,-u, ~t~jJJ-(1-O(1-R)Fr 8,3. 

Fluid: U'.x,j= 0x, Ret ax, 

"Jr ~-~aX] (,~ll Loxirau,__+:_=Oxi _3_~k oo 2 Ou. ~ 1"~ +_~_~i ^=' "~k)OVk 

axe\ Laxs oxi-gT~,uiiJ] -s3~(ui-vi)} 

oui'~ /ov~ ovi\\ -,&,R((~-~+(ul-vi ~)~xj]-~-~+(vs-u,~))-R, FrS,3. [3.4] 

In writing these equations, we have introduced the dimensionless material constants 

~o = CIm 

65 = a3 dp21~lz/ 

~t4 = a4l~.p/. [3.5] 

In addition, we find the following dimensionless parameters: 

~o void fraction 

R -P t  density ratio 
P~ 

Re = uod~p: particle Reynolds number /z/ 

Fr -- gd~/uo 2 particle Froude number. 

We emphasize here that the parameters in [3.6] are easily calculated, being related to macroscopic 
quantities, while the material constants in [3.5] must be measured experimentally. 

As we have already noted, these equations possess a simple steady solution, known as the 
state of "homogeneous" fluidization. It is given dimensionlessly as 

u~ = 8~s 

v~=0 

= ~o [3 .7]  
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provided that 

63(E0) = Re(1 - ~o)(1 - R)Fr 
R [3.8] 

Equation [3.8] is a dimensionless statement of the fact that the drag induced by the uniform 
flow ui is balanced by the net weight of the particles. Equation [3.8] provides a basis for 
measurement of the constant 63(~o). Time-averaged expansion data, giving Eo vs u0, are 
sufficient to fit the function 63 to experiment, provided that any motions (particle or fluid) are 
small amplitude and have zero time average. In I, we reported the results of expansion data, 
and they were seen to be in good agreement with the Richardson-Zaki correlation, which in the 
present variables reads 

d 3 = R e ( 1 - e ) ( I - R ) F r  (u  ) 
R ~ E (I-") [3.9] 

where n is the Richardson-Zaki exponent, and ut is the terminal velocity of a single sphere, 
obtainable from correlations once Re is given. For reference, this relation has been reduced to 
numerical form for the conditions of the experiments and is given in table 1. (The designations 
A, B, C, D refer to bead sizes and conditions of I.) 

We wish to examine the stability of the steady solution [3.7]-[3.8] to small disturbances. It is 
common in linear instability theory to suppose that the steady solution [3.7]-[3.8] is subject to 
small perturbations, viz. 

uj = 83j + u~ 

v i = v~ [3.101 

6 ----- 60+E' 

and equations for the primed variables may be obtained by substitution into [3.1]-[3.4] making 
use of the base state [3.7]-[3.8]. The full non-linear equations are complicated and serve no 
purpose here, so we present here their linearized form. 

Experiments have shown that over some distance above the distributor, the motion is planar 
and one-dimensional. It is this regime we wish to analyze. We thus take all variables to be 
independent of xl and write for simplicity 

v'~(t,X3) = v(t,z); U',(t,x3) = u(t,z); e~t,x3) = Ei(t,z). 

Tabh 1. The values of d3(~) obtained from expansion data 

Set 

A 

B 

c 

A 

~3 

-1.87 
78 (i-£) £ 

-1.65 
109 (i-£) e 

-1.44 
146 (l-e)c 

D 212 (i-£) e -1"34 
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In this case [3.2]-[3.3] are a closed system for (u, v, e'); the one-dimensional linear version of 
[3.4] serves to determine the fluid pressure, pt. Substitution of these forms leads to substantial 

simplifications. We define a vector as 

o:(:i/ [3.111 

and the linear stability equations may be written compactly as 

A O  = 0 [3.12] 

where A is a vector differential operator. In particular, the explicit form of A is 

4 4 + 4  
6OTz o ~/ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4 4 
0 (1 - 6o) ~ 4t 

i . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

A =  R [ 12 42 

~o 4 4 

+ R(1 - eo 0)-0~ t 

R ~-J'22 42 ~ 01  j 
-Ro4oI ,- ] 

- (1 - eo)-O~ O. 
0 1  

0 , R d~3l 
Re de 1,0 4z 

+ (1 - R)Fr 

Here we have puts  O2 /~l 4 i -22 /~2 4 2 = + 3 , 7 ; ~  = +3,7 ;and 

M = - ( 1 -  e 0 ) ~ L , o ,  where 

60 

,7, = ,70, : _  (1 - eo),To,~. 
60 

[3.13] 

In these equations the superscript denotes a material constant evaluated at the base state, 
e.g.. ch o= &3(6o), etc. Note that we have set (Ps-Pi )~0 ,  and consider (4(ps-pt)/4e) as a 
quantity to be specified. We note that rheological material constants appear only in the 
combination of ($ + 4/3/z), as is well known for compressional motion of the form u3 = u3(x3,t), 
etc. The linear instability problem may therefore be viewed as the locus of null vectors 0* of 
the operator A. We seek solutions of the form 

~* = 0 ° exp (at  + ikzz) [3.141 

where ~r, kz are linked together by the requirement that 

det (A*) = 0. [3.15] 

A* is the matrix obtained from [3.13] by the substitution (O/Ot) = a and (4/0z) = ikz. 
Equation [3.15] then gives a complex-valued polynomial whose roots give the dispersion 

relation. 

MF Vol. 6, No. &--C 
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For the disturbance motion growing in time, tr is complex, cr = trr + itri, k~ is real, and it is 
common to write tr = - ikzc resulting in the usual form exp[ i k z ( z  - ct)]. k~ is the wave number, 
related to the wave length ,~ = 2rr / k ,  the wave velocity in the vertical direction is given as 
v = cr = ( - tri/kz) and the growth constant is trr = kzci. 

The analysis for growth in time assumes a disturbance to posess periodic spatial behavior 
while growing exponentially in time. However, what one observes experimentally is a spatially 
periodic progressive wave train whose amplitude grows with distance. We can make the 
connection between the two by using the results of Gaster (1963), which show that, f o r  sma l l  

ampl i f i ca t ion  rates,  the frequency of the spatially and temporally growing modes are equal, and 
the growth constants are related through the group velocity. Since the waves are only weakly 
dispersive, and the comparison with experiment is subject to a fair degree of subjectivity, we 
have simply used the phase velocity in making the comparison between the temporal predic- 
tions and experiment. 

4. COMPARISON WITH EXPERIMENT 

The theory is capable of making predictions of the wave speed and growth constant as a 
function of wave number, provided the material functions M, 64, ~2, ~22 are given. There is 
little previous experimental or theoretical evidence on any of these although it is possible to 
infer some expected magnitudes. A small amount of information may be obtained regarding the 
virtual mass coefficient, a4. It is well-known that the virtual mass coefficient for a single sphere 
may be obtained by solution of the potential flow equations (see, e.g. Landau & Lifshitz 1959, 
section 24). If one assumes this is true for assemblages and adopts a so-called "cell-model", one 
finds Lamb (1945, section 93) 

3+E 
64= 2E " [4.1] 

We therefore expect values of ti4 on the order of 3.5 for the conditions of our experiments. 
Not much is known about the bulk viscosities fl22, f12~, fl~2, fill and the shear viscosities r122, 

r/t2, rl 2~, r/" appearing in [2.14]. The shear viscosity of the fluidized beds may be as high as 
10-20 poise, and certainly decreases strongly with increasing voidage (see, e.g. Davidson et al. 

1977): that most of the momentum transport is due to collisional processes involving particles 
and their resistance to sliding (see Frankel & Acrivos 1967 and Murray 1%7). We adopt the 
point of view taken by many authors, and discussed in some detail by Davidson et al. (1977), 
that the rheological coefficient rl ~2 associated with resistance to deformation of the fluid phase 
is small compared to the coefficient ,/22 associated with that of the solid phase. This is 
admittedly an assumption, but it is plausible under the conditions that the void fraction is small 
(dense systems) and that the resistance to transport offered by particle interactions is much 
greater than that due to the deformations of the continuous phase. This is undoubtedly true in 
dense granular materials and gas fluidized systems: the justification most often cited is the early 
work by Bagnold (1954), but some recent work by Savage (1979) on granular flow provides 
further support for this approximation. We also expect /32~ to be small compared with fl22. 
Finally, there are no extimates available for the parameter M which relates to dependence of 
collisional pressure on voidage. 

In developing predictions, we therefore adopt the following range of parameters as being 
reasonable 

64 - 0(1-10) [4.2a] 

sO 2 ,~ se ~ [4.2b] 

s tz2 - 0 14.2c] 

M - 0(1-10) [4.2d] 
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and proceed to generate numerical results for values of R, Re, Fr, t/3 appropriate to the 
experiments. 

Figure 1 gives a typical set of predictions for the conditions of Run B 1 in I. The general 
features are that the waves are predicted to be only weakly dispersive and that there exists a 
wave number of maximum growth rate. This presumably corresponds to wave number 
observed experimentally. 

Our approach to the comparison of theory with experiment was as follows: the four material 
constants were systematically varied over reasonable ranges until the three measured wave 
properties, namely the wave number, the growth constant and the velocity of propagation, 
matched the predictions to within experimental error. This is thus a parameter estimation 
problem and, because of the large experimental variation of some of the properties within one 
experiment, is a difficult one. However as it will develop below, the range of model parameters 
necessary to span the experimental variation is surprisingly small. Furthermore, all predictions 
were insensitive to the choice of ~:~2, as long as [4.2b] was satisfied. Thus we are left with three 
material constants with which to fit three experimental variables. To include more material 
parameters or to refine the estimates given below would require experimental knowledge of at 
least part of the dispersion relation. These experimental data are unavailable at present. 

Table 2 gives the results of the fits of theory to experiment. Variations in experimental 
quantities are given. When two or more choices of material constants fit the experiments, we 
give them. We have presented the results of I in dimensionless form, using the scalings in [3. I]. 

Generally, it is seen that there is a trade-off between ~:2~ and (~4, M). A fit is sometimes 
possible for both large and small values of these parameters. Other than that, the results in table 
2 are quite encouraging. In particular it is possible to fit the experiments with values of material 
constants which are both reasonable in magnitude and consistent between sets of data for 
which both the particle size and fluidizing velocity were varied over a relatively wide range. 
Although we are tempted to go one step further and deduce the dependence of material 
constants on voidage from the data in table 2, we do not feel that the experiments are 
sufficiently accurate to justify doing so. Recalling however that the sets of data are numbered in 
order of increasing particle size and increasing voidage within each set, we find a consistency in 
table 2 in the sense that 

(1) ~:~z decreases with increasing voidage. 

i i l 1 

.2 

b ~" 0 ~ 

Z 

z 1.4 ~. o ~ 
0 -.2 ° 
I )" 
I -  1.3 t -  

o o 
r r  
(.9 1 . 2 ~  

- .4 .  
O3 

I . I  ~ 
-.5 Q. 

l I I I 
.05 .I .15 .2 

WAVE N U M B E R ,  K 

Figure 1. Typical linear instability predictions for the conditions of Run BL ~2 =6.5 x 103, ~4 = 5.0, 
M = 7.0. 
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(2) M = - (1  -Eo) (a(p~ -Pp/Oe)l,=,o is always positive implying that the collisional pressure 
always decreases with increasing voidage. 

We carried out a sensitivity analysis to see how the propagation properties change with 
small changes in the values of the deduced material constants given in table 2. We can write the 
change in growth constant as 

. , M,k:,~22dot4 + a~r ) dM. 
d4,kz,~ :22 

[4.3] 

Table 2. Comparison of theory and experiment 

3 ~22 ,, 
Run k OrXl0 V x i0 -3 ~4 M 

A1 .07-.157 .4 1.48 -- experiment -- 

.125 .417 1.46 5.5 3 7 

.i .4 1.44 9.5 4 8 

.]25 .42? 1.41 7 3 5 

A2 .2 2.7 i. 5 -- experiment -- 

.2 2.7 1.32 2.5 6 9 

.2 2.6 1.32 3.5 3 5 

A3 .17-.25 4.4 1.45-1.72 -- experiment -- 

.2 4.6 1.39 1.5 ii 17 

.225 4.35 1.36 1.5 5 8 

B1 .062-.115 1.0 1.2-1.32 -- experiment -- 

.125 1.04 1.20 7.5 6 8 

.i 1.03 1.27 6.5 5 7 

.I 1.04 1.22 9.5 7 9 

B2 .186-.279 1.83 1.26-1.35 -- experiment -- 

.2 1.93 1.23 1.5 2 4 

B3 .296-.31 7.9 1.25 -- experiment -- 

.225 7.8 1.23 1.5 7 8 

.25 7.95 1.20 1.0 6 9 

C1 .17-.32 1.87 .97-1.03 -- experiment -- 

.15 1.89 .968 2.0 14 13 

.15 1.79 .983 1.5 17 16 

.175 1.89 .991 1.0 i0 i0 
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Run k Or x103 V ~2 x 10 -3 ~4 M 

C2,C3 .17-.323 6.6 1.0 -- experiment -- 

.225 6.81 .957 .5 12 ii 

.25 6.6 .96 .4 8 i0 

D1 .075-.32 3.6 .92 -- experiment -- 

.2 3.56 .914 1.5 4 4 

.175 3.56 .908 2.0 8 7 

.15 3.5 .921 1.5 18 15 

D2 .25-.34 13.7 .91 -- experiment -- 

.275 13.8 .88 1.0 8 6 

D3 .31-.39 23. .94 -- experiment -- 

.325 23.9 .85 .4 3 3 

.375 22.1 .86 .6 5 7 

By evaluating the partial derivatives in [4.3], we found that for the same percentage change in 
the values of the three material constants, the contributions from the three terms on the left 
hand side are of the same order of magnitude. This implies that the values of all three material 
constants should be known to the same degree of accuracy for predicting the motions in a 
fluidized bed, at least in the case of fluidization by a liquid. 

In conclusion we have found a continuum theory capable of quantitatively and consistently 
describing the propagation of small amplitude instability waves in fluidized beds, and we have 
used the experimental data to deduce values of the material constants appearing in the 
constitutive equation. 
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